
Supervised Machine Learning (providing labels)
Regression v.s. Classification:
one for the continuous data, the other for the discrete data.
public class Solution { | |
/** | |
* @param grid: an integer matrix | |
* @return: an integer | |
*/ | |
int numIslandCities(int[][] A) { | |
// filter abnormal cases | |
if (A == null || A.length == 0) { | |
return 0; | |
} | |
this.m = A.length; | |
this.n = A[0].length; | |
this.A = A; | |
this.visited = new boolean[m][n]; | |
int counter = 0; | |
for (int i = 0; i < m; i++) { | |
for (int j = 0; j < n; j++) { | |
if (A[i][j] == 2 && !visited[i][j]) { | |
dfs(i, j); | |
counter++; | |
} | |
} | |
} | |
// return the final result | |
return counter; | |
} | |
int[][] A; | |
boolean[][] visited; | |
int m; | |
int n; | |
private void dfs(int i, int j) { | |
if (i < 0 || j < 0 || i >= m || j >= n) { | |
return; | |
} | |
if (A[i][j] == 0) { | |
return; | |
} | |
if (visited[i][j]) { | |
return; | |
} | |
visited[i][j] = true; | |
A[i][j] = 2; | |
dfs(i - 1, j); | |
dfs(i + 1, j); | |
dfs(i, j - 1); | |
dfs(i, j + 1); | |
} | |
} |
public class Solution { | |
/** | |
* @param arr: The 2-dimension array | |
* @return: Return the column the leftmost one is located | |
*/ | |
int getColumn(int[][] A) { | |
// filter abnormal cases | |
if (A == null || A.length == 0) { | |
return 0; | |
} | |
this.m = A.length; | |
this.n = A[0].length; | |
int min = A.length - 1; | |
for (int i = 0; i < m; i++) { | |
int index = binarySearch(A[i]); | |
min = Math.min(min, index); | |
} | |
// return the final result | |
return min; | |
} | |
int m; | |
int n; | |
int binarySearch(int[] A) { | |
int left = 0; | |
int right = A.length - 1; | |
while (left + 1 < right) { | |
int mid = (right - left) / 2 + left; | |
if (A[mid] == 1) { | |
right = mid; | |
} else { | |
left = mid; | |
} | |
} | |
if (A[left] == 1) { | |
return left; | |
} else { | |
return right; | |
} | |
} | |
} |
public class Solution { | |
/** | |
* @param ages: The ages | |
* @return: The answer | |
*/ | |
public int friendRequest(int[] ages) { | |
// Write your code here | |
if (ages == null || ages.length == 0) { | |
return 0; | |
} | |
// Arrays.sort(ages); | |
int answer = 0; | |
for (int b = 0; b < ages.length; b++) { | |
int delta = 0; | |
if (ages[b] >= 100) { | |
for (int a = 0; a < ages.length; a++) { | |
if (a == b) { | |
continue; | |
} | |
// System.out.println("a, b = " + a + ", " + b + "; ages[a], ages[b] = " + ages[a] + ", " + ages[b]); | |
if (ages[a] < ages[b] || ages[a] / 2 + 7 >= ages[b]) { | |
} else { | |
delta++; | |
} | |
} | |
} else { | |
for (int a = 0; a < ages.length; a++) { | |
if (a == b) { | |
continue; | |
} | |
// System.out.println("a, b = " + a + ", " + b + "; ages[a], ages[b] = " + ages[a] + ", " + ages[b]); | |
if (ages[a] > 100 || ages[a] < ages[b] || ages[a] / 2 + 7 >= ages[b]) { | |
} else { | |
delta++; | |
} | |
} | |
} | |
// System.out.println(delta); | |
answer += delta; | |
} | |
return answer; | |
} | |
} |
public class Solution { | |
/** | |
* @param arr: The prime array | |
* @return: Return the array of all of prime product | |
*/ | |
int[] getPrimeProduct(int[] A) { | |
// filter abnormal cases | |
if (A == null || A.length == 0) { | |
return new int[0]; | |
} | |
this.A = A; | |
this.set = new HashSet<>(); | |
helper(0, 1, 0); | |
TreeSet<Integer> treeSet = new TreeSet<>(set); | |
int[] answer = new int[treeSet.size()]; | |
for (int i = 0; i < answer.length; i++) { | |
answer[i] = treeSet.pollFirst(); | |
} | |
// return the final result | |
return answer; | |
} | |
private void helper(int index, int product, int counter) { | |
if (index == A.length) { | |
if (counter > 1) { | |
set.add(product); | |
} | |
} else { | |
helper(index + 1, product * A[index], counter + 1); | |
helper(index + 1, product, counter); | |
} | |
} | |
int[] A; | |
HashSet<Integer> set; | |
} |
class Solution { | |
boolean validTicTacToe(String[] A) { | |
// filter abnormal cases | |
if (A == null || A.length == 0) { | |
return false; | |
} | |
int XCount = 0; | |
int OCount = 0; | |
for (int i = 0; i < 3; i++) { | |
for (int j = 0; j < 3; j++) { | |
if (A[i].charAt(j) == 'X') { | |
XCount++; | |
} else if (A[i].charAt(j) == 'O') { | |
OCount++; | |
} | |
} | |
} | |
int XWinCount = 0; | |
int OWinCount = 0; | |
if (A[1].charAt(1) != ' ') { | |
if (A[1].charAt(1) == 'X') { | |
// * / \ | |
if (A[2].charAt(0) == 'X' && A[0].charAt(2) == 'X') { | |
XWinCount++; | |
} | |
if (A[2].charAt(2) == 'X' && A[0].charAt(0) == 'X') { | |
XWinCount++; | |
} | |
// + - | | |
if (A[1].charAt(0) == 'X' && A[1].charAt(2) == 'X') { | |
XWinCount++; | |
} | |
if (A[2].charAt(1) == 'X' && A[0].charAt(1) == 'X') { | |
XWinCount++; | |
} | |
} else { | |
// * / \ | |
if (A[2].charAt(0) == 'O' && A[0].charAt(2) == 'O') { | |
OWinCount++; | |
} | |
if (A[2].charAt(2) == 'O' && A[0].charAt(0) == 'O') { | |
OWinCount++; | |
} | |
// + - | | |
if (A[1].charAt(0) == 'O' && A[1].charAt(2) == 'O') { | |
OWinCount++; | |
} | |
if (A[2].charAt(1) == 'O' && A[0].charAt(1) == 'O') { | |
OWinCount++; | |
} | |
} | |
} | |
if (A[0].charAt(0) != ' ') { | |
if (A[0].charAt(0) == 'X') { | |
// | - | |
if (A[2].charAt(0) == 'X' && A[1].charAt(0) == 'X') { | |
XWinCount++; | |
} | |
if (A[0].charAt(1) == 'X' && A[0].charAt(2) == 'X') { | |
XWinCount++; | |
} | |
} else { | |
// | - | |
if (A[2].charAt(0) == 'O' && A[1].charAt(0) == 'O') { | |
OWinCount++; | |
} | |
if (A[0].charAt(1) == 'O' && A[0].charAt(2) == 'O') { | |
OWinCount++; | |
} | |
} | |
} | |
if (A[2].charAt(2) != ' ') { | |
if (A[2].charAt(2) == 'X') { | |
// | - | |
if (A[0].charAt(2) == 'X' && A[1].charAt(2) == 'X') { | |
XWinCount++; | |
} | |
if (A[2].charAt(0) == 'X' && A[2].charAt(1) == 'X') { | |
XWinCount++; | |
} | |
} else { | |
// | - | |
if (A[0].charAt(2) == 'O' && A[1].charAt(2) == 'O') { | |
OWinCount++; | |
} | |
if (A[2].charAt(0) == 'O' && A[2].charAt(1) == 'O') { | |
OWinCount++; | |
} | |
} | |
} | |
// System.out.println(XCount); | |
// System.out.println(OCount); | |
if (XCount != OCount && XCount != (OCount + 1)) { | |
return false; | |
} | |
if (XWinCount + OWinCount > 1) { | |
return false; | |
} | |
if (XWinCount == 1) { | |
return XCount == OCount + 1; | |
} else if (OWinCount == 1) { | |
return XCount == OCount; | |
} | |
return true; | |
} | |
} |