Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: 2 / \ 1 3 Output: true
Example 2:
5 / \ 1 4 / \ 3 6 Output: false Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value is 5 but its right child's value is 4.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Definition for a binary tree node. | |
* public class TreeNode { | |
* int val; | |
* TreeNode left; | |
* TreeNode right; | |
* TreeNode(int x) { val = x; } | |
* } | |
*/ | |
class Solution { | |
public boolean isValidBST(TreeNode root) { | |
// corner cases | |
if (root == null) { | |
return true; | |
} | |
return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE); | |
} | |
public boolean isValidBST(TreeNode root, long min, long max) { | |
// corner cases | |
if (root == null) { | |
return true; | |
} | |
if (root.val <= min || root.val >= max) { | |
return false; | |
} | |
return isValidBST(root.left, min, Math.min(max, root.val)) && isValidBST(root.right, Math.max(min, root.val), max); | |
} | |
} |