(Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)
Example 1:
Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)
Example 2:
Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)
Note:
L, R will be integers L <= R in the range [1, 10^6].
R - L will be at most 10000.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
/** | |
* @param L | |
* @param R | |
* @return | |
*/ | |
public int countPrimeSetBits(int L, int R) { | |
if (L > R) { | |
return 0; | |
} | |
// core logic | |
int counter = 0; | |
for (int i = L; i <= R; i++) { | |
if (isPrime(numberOfBits(i))) { | |
counter++; | |
} | |
} | |
return counter; | |
} | |
private int numberOfBits(int i) { | |
int counter = 0; | |
while (i > 0) { | |
counter += i % 2; | |
i /= 2; | |
} | |
return counter; | |
} | |
private static HashSet<Integer> primeSet = new HashSet<>(); | |
static { | |
{ | |
primeSet.add(2); | |
primeSet.add(3); | |
primeSet.add(5); | |
primeSet.add(7); | |
primeSet.add(11); | |
primeSet.add(13); | |
primeSet.add(17); | |
primeSet.add(19); | |
primeSet.add(23); | |
primeSet.add(29); | |
primeSet.add(31); | |
} | |
} | |
private boolean isPrime(int i) { | |
return primeSet.contains(i); | |
} | |
} |
No comments:
Post a Comment