/**
* dynamic programming
* DP Elements:
* 1. state:
* dp ijt means the combinations, of picking j numbers, from the first i numbers. that sum to the t.
*
* 2. Init
* dp 0j mean no number to pick, target 0 would meet, otherwise haha
* dp i0 mean pick 0 numbers, same as above.
*
* 3. Func
* dp ijt = no pick -> dp i - 1, j, t
* pick -> dp i - 1, j - 1, t - A[i]
*
* 4. Answer
* dp len, k
*/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
public class Solution { | |
public int kSum(int[] A, int k, int target) { | |
// filter abnormal cases | |
if (A == null || A.length == 0) { | |
return target == 0 ? 1 : 0; | |
} | |
dp = new int[A.length + 1][k + 1][target + 1]; | |
flag = new boolean[A.length + 1][k + 1][target + 1]; | |
this.A = A; | |
// return the final result | |
helper(A.length, k, target); | |
for (int i = 0; i <= A.length; i++) { | |
for (int j = 0; j <= k; j++) { | |
System.out.println(Arrays.toString(flag[i][j])); | |
} | |
} | |
for (int i = 0; i <= A.length; i++) { | |
for (int j = 0; j <= k; j++) { | |
System.out.println(Arrays.toString(dp[i][j])); | |
} | |
} | |
return dp[A.length][k][target]; | |
} | |
int[][][] dp; | |
boolean[][][] flag; | |
int[] A; | |
public int helper(int i, int j, int t) { | |
if (flag[i][j][t]) { | |
return dp[i][j][t]; | |
} | |
flag[i][j][t] = true; | |
if (i < j) { | |
dp[i][j][t] = 0; | |
} else if (i == 0 || j == 0) { | |
dp[i][j][t] = t == 0 ? 1 : 0; | |
} else { | |
dp[i][j][t] = helper(i - 1, j, t); | |
if (t - A[i - 1] >= 0) { | |
dp[i][j][t] += helper(i - 1, j - 1, t - A[i - 1]); | |
} | |
} | |
return dp[i][j][t]; | |
} | |
} |
No comments:
Post a Comment